

 Buffy

 v2.3.0

 Table of contents

 	Buffy

 	Changelog

 	LICENSE

 	Modules

 	Buffy

 	Buffy.Application

 	Buffy.Throttle

 	Buffy.ThrottleAndTimed

 	MyJitterThrottler

 	MySlowThrottler

 	MyZeroThrottler

Buffy

Buffy is a small library of Elixir modules to assist in throttling and debouncing function calling.
Roadmap
	[] Allow limiting concurrency of running tasks
	[] Create a debounce module
	[X] Telemetry instrumentation

Installation
Just add buffy to your mix.exs file like so:
def deps do
 [
 {:buffy, "~> 2.3.0"}
]
end
Published Documentation
Documentation is automatically generated and published to HexDocs on new releases.

Changelog

2.3.0 (2025-04-16)
Features
	Add telemetry metric for process memory usage (#43) (b0fdb25)
	Allow dynamic loop and throttle args (#44) (d065295)

Miscellaneous
	Create CODEOWNERS (#48) (b2b7920)
	Sync files with stordco/common-config-elixir (#40) (1409ddc)
	Sync files with stordco/common-config-elixir (#45) (2971294)
	Sync files with stordco/common-config-elixir (#49) (a468420)
	Update moduledoc module example snippets (#41) (2c4c8dc)

2.2.0 (2024-03-13)
Features
	SIGNAL-5811 add time interval bucket feature to ThrottleAndTimed and make loop_interval optional (#39) (3d48d04)

Miscellaneous
	Sync files with stordco/common-config-elixir (#27) (d7cffde)
	Sync files with stordco/common-config-elixir (#38) (c127668)

2.1.1 (2023-12-18)
Bug Fixes
	SIGNAL-5504 fix usage of option fields and typespec (#32) (fbb8fd2)

2.1.0 (2023-12-15)
Features
	Add jitter option to throttle function (#26) (7991f91)

Bug Fixes
	Debounce should be throttle (#30) (c0cd187)

Miscellaneous
	Sync files with stordco/common-config-elixir (#23) (68bdd18)

2.0.1 (2023-10-03)
Bug Fixes
	Update callback to match spec (#21) (5902653)

2.0.0 (2023-10-02)
⚠ BREAKING CHANGES
	Buffy.Throttle.throttle/1 will now return :ok instead of {:ok, pid}

Bug Fixes
	Return :ok for already started throttle processes (#20) (07909be)

Miscellaneous
	Remove old publish workflow (#15) (4b10fec)
	Sync files with stordco/common-config-elixir (#18) (bfe20fd)
	Sync files with stordco/common-config-elixir (#19) (7395018)
	Update Hex Link in README.md (#17) (68927c6)

1.2.2 (2023-09-26)
Bug Fixes
	Do not double supervise throttle module (#13) (ce046ba)
	Ensure to always hash binary version of args (#14) (6216805)

Miscellaneous
	Sync files with stordco/common-config-elixir (#10) (930fabe)
	Sync files with stordco/common-config-elixir (#12) (7d190da)

1.2.1 (2023-08-24)
Miscellaneous
	Make buffy public (#8) (d1eb14f)

1.2.0 (2023-08-24)
Features
	Add telemetry to the throttle module (#7) (74539d8)

Miscellaneous
	Add MIT license (#5) (fc4306a)
	Sync files with stordco/common-config-elixir (#3) (d8bdce2)
	Update README (#6) (a874e46)

1.1.0 (2023-07-13)
Features
	Make types and logic flow more clear (7c57e46)
	Setup basic elixir repository (785b3b8)
	Simplify first module usage (b13c522)

Bug Fixes
	Update release please version (33aa3c3)
	Update test stream data to only run 500 times (5a423ad)
	Update test timeout to account for large CI runs (535c739)

Miscellaneous
	Remove credo debug file (1f1419b)
	Rename debounce module to throttle (73d0cf5)
	Sync files with stordco/common-config-elixir (#2) (c6e4f34)
	Update Buffy.Throttle moduledoc (c906c43)

LICENSE

The MIT License (MIT)
Copyright (c) 2023-present STORD, Inc.
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Buffy

Buffy is broken down into different modules depending on how you want to
handle your function calling.
Throttle
The Buffy.Throttle module will wait for a specified amount of time before
invoking the function. If the function is called again before the time has
elapsed, it's a no-op. Once the timer has expired, the function will be called,
and any subsequent calls will start a new timer.
call call call call call
 | call | call | call | call |
 | | | | | | | | |
┌─────────┐ ┌─────────┐ ┌─────────┐ ┌─────────┐
│ Timer 1 │ │ Timer 2 │ │ Timer 3 │ │ Timer 4 │
└─────────| └─────────┘ └─────────┘ └─────────┘
 | | | |
 | | | Forth function invocation
 | | Third function invocation
 | Second function invocation
First function invocation

Buffy.Application

The Buffy supervisor responsible for starting the default
Registry and DynamicSupervisor.

Buffy.Throttle behaviour

The Buffy.Throttle module will wait for a specified amount of time before
invoking the function. If the function is called again before the time has
elapsed, it's a no-op. Once the timer has expired, the function will be called,
and any subsequent calls will start a new timer.
call call call call call
 | call | call | call | call |
 | | | | | | | | |
┌─────────┐ ┌─────────┐ ┌─────────┐ ┌─────────┐
│ Timer 1 │ │ Timer 2 │ │ Timer 3 │ │ Timer 4 │
└─────────| └─────────┘ └─────────┘ └─────────┘
 | | | |
 | | | Forth function invocation
 | | Third function invocation
 | Second function invocation
First function invocation
Example Usage
You'll first need to create a module that will be used to throttle.
defmodule MyTask do
 use Buffy.Throttle,
 throttle: :timer.minutes(2)

 def handle_throttle(args) do
 # Do something with args
 end
end
Next, you can use the throttle/1 function with the registered module.
iex> MyTask.throttle(args)
:ok
Options
	:jitter (integer) - Optional. The amount of jitter or randomosity to add to the throttle function handle. This value is in milliseconds. Defaults to 0.

	:registry_module (atom) - Optional. A module that implements the Registry behaviour. If you are running in a distributed instance, you can set this value to Horde.Registry. Defaults to Registry.

	:registry_name (atom) - Optional. The name of the registry to use. Defaults to the built in Buffy registry, but if you are running in a distributed instance you can set this value to a named Horde.Registry process. Defaults to Buffy.Registry.

	:restart (:permanent | :temporary | :transient) - Optional. The restart strategy to use for the GenServer. Defaults to :temporary.

	:supervisor_module (atom) - Optional. A module that implements the DynamicSupervisor behaviour. If you are running in a distributed instance, you can set this value to Horde.DynamicSupervisor. Defaults to DynamicSupervisor.

	:supervisor_name (atom) - Optional. The name of the dynamic supervisor to use. Defaults to the built in Buffy dynamic supervisor, but if you are running in a distributed instance you can set this value to a named Horde.DynamicSupervisor process. Defaults to Buffy.DynamicSupervisor.

	:throttle (non_neg_integer) - Optional. The minimum amount of time to wait before invoking the function. This value is in milliseconds. The actual run time could be longer than this value based on the :jitter option.

Dynamic Options
Sometimes you want a different throttle value or jitter value based on the arguments you pass in. To deal with this, there are optional functions you can implement in your throttle module. These functions take in the arguments and will return the throttle and jitter values. For example:
defmodule MyThrottler do
 use Buffy.Throttle,
 registry_module: Horde.Registry,
 registry_name: MyApp.HordeRegistry,
 supervisor_module: Horde.DynamicSupervisor,
 supervisor_name: MyApp.HordeDynamicSupervisor,
 throttle: :timer.minutes(2)

 def get_jitter(args) do
 case args do
 %Cat{} -> :timer.minutes(2)
 %Dog{} -> :timer.seconds(10)
 _ -> 0
 end
 end
end
Using with Horde
If you are running Elixir in a cluster, you can utilize Horde to only run one of your throttled functions at a time. To do this, you'll need to set the :registry_module and :supervisor_module options to Horde.Registry and Horde.DynamicSupervisor respectively. You'll also need to set the :registry_name and :supervisor_name options to the name of the Horde registry and dynamic supervisor you want to use.
 defmodule MyThrottler do
 use Buffy.Throttle,
 registry_module: Horde.Registry,
 registry_name: MyApp.HordeRegistry,
 supervisor_module: Horde.DynamicSupervisor,
 supervisor_name: MyApp.HordeDynamicSupervisor,
 throttle: :timer.minutes(2)

 def handle_throttle(args) do
 # Do something with args
 end
 end
Telemetry
These are the events that are called by the Buffy.Throttle module:
	[:buffy, :throttle, :throttle] - Emitted when the throttle/1 function is called.
	[:buffy, :throttle, :handle, :jitter] - Emitted before the handle_throttle/1 function is called with the amount of jitter added to the throttle.
	[:buffy, :throttle, :handle, :start] - Emitted at the start of the handle_throttle/1 function.
	[:buffy, :throttle, :handle, :stop] - Emitted at the end of the handle_throttle/1 function.
	[:buffy, :throttle, :handle, :exception] - Emitted when an error is raised in the handle_throttle/1 function.

All of these events will have the following metadata:
	:args - The arguments passed to the throttle/1 function.
	:key - A hash of the passed arguments used to deduplicate the throttled function.
	:module - The module using Buffy.Throttle.

With the additional metadata for [:buffy, :throttle, :handle, :stop]:
	:result - The return value of the handle_throttle/1 function.

Memory Leaks
With any sort of debounce and Elixir processes, you need to be careful about handling too many processes, or having to much state in memory at the same time. If you handle large amounts of data there is a good chance you'll end up with high memory usage and possibly affect other parts of your system.
To help monitor this usage, Buffy has a telemetry metric that measures the Elixir process memory usage. If you summarize this metric you should get a good view into your buffy throttle processes.
summary("buffy.throttle.total_heap_size", tags: [:module])

 Summary

 Types

 args()

 A list of arbitrary arguments that are used for the handle_throttle/1
function.

 key()

 A unique key for debouncing. This is used for GenServer uniqueness and is
generated from hashing all of the args.

 state()

 Internal state that Buffy.Throttle keeps.

 Callbacks

 get_jitter(args)

 Returns the amount of jitter in milliseconds to add to the throttle time.

 get_throttle(args)

 Returns the amount of throttle time in milliseconds.

 handle_throttle(args)

 The function called after the throttle has completed. This function will
receive the arguments passed to the throttle/1 function.

 throttle(args)

 A function to call the throttle. This will start
and wait the configured throttle time before calling the handle_throttle/1
function.

Types

 Link to this type

 args()

 View Source

 @type args() :: term()

A list of arbitrary arguments that are used for the handle_throttle/1
function.

 Link to this type

 key()

 View Source

 @type key() :: term()

A unique key for debouncing. This is used for GenServer uniqueness and is
generated from hashing all of the args.

 Link to this type

 state()

 View Source

 @type state() :: {key(), args()}

Internal state that Buffy.Throttle keeps.

Callbacks

 Link to this callback

 get_jitter(args)

 View Source

 @callback get_jitter(args()) :: non_neg_integer()

Returns the amount of jitter in milliseconds to add to the throttle time.

 Link to this callback

 get_throttle(args)

 View Source

 @callback get_throttle(args()) :: non_neg_integer()

Returns the amount of throttle time in milliseconds.

 Link to this callback

 handle_throttle(args)

 View Source

 @callback handle_throttle(args()) :: any()

The function called after the throttle has completed. This function will
receive the arguments passed to the throttle/1 function.

 Link to this callback

 throttle(args)

 View Source

 @callback throttle(args()) :: :ok | {:error, term()}

A function to call the throttle. This will start
and wait the configured throttle time before calling the handle_throttle/1
function.

Buffy.ThrottleAndTimed behaviour

This is a variation on the Buffy.Throttle behavior.
It keeps the following functionality:
	wait for a specified amount of time before
invoking the work function. If the function is called again before the time has
elapsed, it's a no-op.

Key difference between Buffy.Throttle and Buffy.ThrottleAndTimed:
	it will not be terminated once the timer is done, but kept alive	internally, the existing timer behavior is done via state rather than handling {:error, {:already_started, pid}} output of GenServer.start_link.	See note on Horde about state.

	it has an optional :loop_interval field value (set by config) to trigger work repeatedly based on a empty inbox timeout interval,
that is based on GenServer's timeout feature.
	allows for manipulating state for each throttle via defoveridable functions (see use case below)

Main reason for these changes is sometimes there's a need to fall back to a time-interval triggered work, when there aren't any triggers to
start the work. Requirement of this means the process should exist and not get terminated immediately after a successfully throttled work execution.
In other words, we keep the throttle mechanism:
Once the timer has expired, the function will be called,
and any subsequent calls will start a new timer.
call call call call call
 | call | call | call | call |
 | | | | | | | | |
┌─────────┐ ┌─────────┐ ┌─────────┐ ┌─────────┐
│ Timer 1 │ │ Timer 2 │ │ Timer 3 │ │ Timer 4 │
└─────────| └─────────┘ └─────────┘ └─────────┘
 | | | |
 | | | Forth function invocation
 | | Third function invocation
 | Second function invocation
First function invocation
With the optionally enabled trigger, ending up in this lifecycle:
graph TB
 A[Start Buffy] -->|start_link| B(Init Buffy)
 B --> |initial handle_continue| W(Do throttled work)
 S(Messages sent to Buffy) --> |message to trigger work| D{Can Throttle?}
 D --> |YES| W
 D --> |NO| C(Ignore message as throttle already scheduled)
 S --> |empty inbox timeout interval| P(Do immediate work)
 W --> |set message inbox timeout| S
 P --> |set message inbox timeout| S
Note on usage with Horde
Under Horde, the state unfortunately doesn't get synced up automatically - that requires explicit tooling.
Therefore state will be "reset" to the initial state when process boots up. This is not a big issue as the initial state is to
set a throttled run of handle_throttle.
How to start timed interval triggers when your application boots up
By design this will not run when your application starts. If there's a need to start the inbox timeout,
then create a child spec for the application Supervisor (typically in application.ex)
for a Task module, that runs how many instances of throttle/1 as necessary.
Example implementation is:
application.ex
def start(_type, _args) do
 ...
 children = [
 ...
 {true,
 Supervisor.child_spec(
 {Task,
 fn ->
 for x <- 1..10, do: MyModuleUsingThrottleAndTimed.throttle(some: "value", x: x)
 end},
 id: MyModuleUsingThrottleAndTimedInit,
 restart: :temporary
)}
]
 ...
Example Usage
You'll first need to create a module that will be used to throttle.
defmodule MyTask do
 use Buffy.ThrottleAndTimed,
 throttle: :timer.minutes(2),
 loop_interval: :timer.minutes(2)

 def handle_throttle(args) do
 # Do something with args
 end
end
Next, you can use the throttle/1 function with the registered module.
iex> MyTask.throttle(args)
:ok
Options
	:throttle (non_neg_integer) - Optional. The amount of time to wait before invoking the function. This value is in milliseconds.

	:registry_module (atom) - Optional. A module that implements the Registry behaviour. If you are running in a distributed instance, you can set this value to Horde.Registry. Defaults to Registry.

	:registry_name (atom) - Optional. The name of the registry to use. Defaults to the built in Buffy registry, but if you are running in a distributed instance you can set this value to a named Horde.Registry process. Defaults to Buffy.Registry.

	:restart (:permanent | :temporary | :transient) - Optional. The restart strategy to use for the GenServer. Defaults to :temporary.

	:supervisor_module (atom) - Optional. A module that implements the DynamicSupervisor behaviour. If you are running in a distributed instance, you can set this value to Horde.DynamicSupervisor. Defaults to DynamicSupervisor.

	:supervisor_name (atom) - Optional. The name of the dynamic supervisor to use. Defaults to the built in Buffy dynamic supervisor, but if you are running in a distributed instance you can set this value to a named Horde.DynamicSupervisor process. Defaults to Buffy.DynamicSupervisor.

	:loop_interval (atom) - Optional. The amount of time that this process will wait while inbox is empty until sending a :timeout message (handle via handle_info). Resets if message comes in. In milliseconds. Without this, the module would function exactly like Buffy.Throttle.

Dynamic Options
Sometimes you want a different throttle value or loop interval value based on the arguments you pass in. To deal with this, there are optional functions you can implement in your throttle and timed module. These functions take in the arguments and will return the throttle and loop interval values. For example:
defmodule MyThrottler do
 use Buffy.ThrottleAndTimed,
 registry_module: Horde.Registry,
 registry_name: MyApp.HordeRegistry,
 supervisor_module: Horde.DynamicSupervisor,
 supervisor_name: MyApp.HordeDynamicSupervisor,
 throttle: :timer.minutes(2)

 def get_loop_interval(args) do
 case args do
 %Cat{} -> :timer.minutes(2)
 %Dog{} -> :timer.seconds(10)
 _ -> 0
 end
 end
end
Example Usage:
Have throttle/1 add to data to state to process in handle_throttle/1
 defmodule MyTimedSlowBucketingThrottler do
 use Buffy.ThrottleAndTimed,
 throttle: 100,
 supervisor_module: DynamicSupervisor,
 supervisor_name: MyDynamicSupervisor

 def handle_throttle(%{test_pid: test_pid, values: values} = args) do
 Process.sleep(200)
 send(test_pid, {:ok, args, System.monotonic_time()})
 values
 end

 def args_to_key(%{key: key}), do: key |> :erlang.term_to_binary() |> :erlang.phash2()

 def update_args(%{values: values} = old_arg, %{values: new_values} = _new_arg)
 when is_list(values) and is_list(new_values) do
 %{old_arg | values: Enum.sort(values ++ new_values)}
 end

 def update_state_with_work_result(%{args: %{values: state_values} = args} = state, result) do
 # because `handle_throttle()` runs in the `:continue` lifecycle of GenServer,
 # inbox processing is paused until the logic completes. Inbox will continually get new messages,
 # from calling `throttle()` and will be processed only after completion of `handle_throttle()`.
 %{state | args: %{args | values: []}}
 end
 end
Using with Horde
If you are running Elixir in a cluster, you can utilize Horde to only run one of your throttled functions at a time. To do this, you'll need to set the :registry_module and :supervisor_module options to Horde.Registry and Horde.DynamicSupervisor respectively. You'll also need to set the :registry_name and :supervisor_name options to the name of the Horde registry and dynamic supervisor you want to use.
 defmodule MyThrottler do
 use Buffy.ThrottleAndTimed,
 registry_module: Horde.Registry,
 registry_name: MyApp.HordeRegistry,
 supervisor_module: Horde.DynamicSupervisor,
 supervisor_name: MyApp.HordeDynamicSupervisor,
 throttle: :timer.minutes(2),
 loop_interval: :timer.minutes(10)

 def handle_throttle(args) do
 # Do something with args
 end
 end
Telemetry
These are the events that are called by the Buffy.ThrottleAndTimed module:
	[:buffy, :throttle, :throttle] - Emitted when the throttle/1 function is called.
	[:buffy, :throttle, :timeout] - Emitted when inbox timeout is triggered.
	[:buffy, :throttle, :handle, :start] - Emitted at the start of the handle_throttle/1 function.
	[:buffy, :throttle, :handle, :stop] - Emitted at the end of the handle_throttle/1 function.
	[:buffy, :throttle, :handle, :exception] - Emitted when an error is raised in the handle_throttle/1 function.

All of these events will have the following metadata:
	:args - The arguments passed to the throttle/1 function.
	:key - A hash of the passed arguments used to deduplicate the throttled function.
	:module - The module using Buffy.ThrottleAndTimed.

With the additional metadata for [:buffy, :throttle, :handle, :stop]:
	:result - The return value of the handle_throttle/1 function.

Memory Leaks
With any sort of debounce and Elixir processes, you need to be careful about handling too many processes, or having to much state in memory at the same time. If you handle large amounts of data there is a good chance you'll end up with high memory usage and possibly affect other parts of your system.
To help monitor this usage, Buffy has a telemetry metric that measures the Elixir process memory usage. If you summarize this metric you should get a good view into your buffy throttle processes.
summary("buffy.throttle.total_heap_size", tags: [:module])

 Summary

 Types

 args()

 A list of arbitrary arguments that are used for the handle_throttle/1
function.

 key()

 A unique key for debouncing. This is used for GenServer uniqueness and is
generated from hashing all of the args.

 loop_interval()

 The amount of time that this process will wait while inbox is empty
until sending a :timeout message.

 state()

 Internal state that Buffy.ThrottleAndTimed keeps.

 Callbacks

 args_to_key(args)

 Generates a unique key for the given arguments.

 get_loop_interval(args)

 Returns the amount of jitter in milliseconds to add to the throttle time.

 get_throttle(args)

 Returns the amount of throttle time in milliseconds.

 handle_throttle(args)

 The function called after the throttle has completed. This function will
receive the arguments passed to the throttle/1 function.

 throttle(args)

 A function to call the throttle. This will start
and wait the configured throttle time before calling the handle_throttle/1
function.

Types

 Link to this type

 args()

 View Source

 @type args() :: term()

A list of arbitrary arguments that are used for the handle_throttle/1
function.

 Link to this type

 key()

 View Source

 @type key() :: term()

A unique key for debouncing. This is used for GenServer uniqueness and is
generated from hashing all of the args.

 Link to this type

 loop_interval()

 View Source

 @type loop_interval() :: non_neg_integer() | :infinity

The amount of time that this process will wait while inbox is empty
until sending a :timeout message.

 Link to this type

 state()

 View Source

 @type state() :: %{
 args: args(),
 key: key(),
 loop_interval: loop_interval(),
 timer_ref: nil | reference()
}

Internal state that Buffy.ThrottleAndTimed keeps.

Callbacks

 Link to this callback

 args_to_key(args)

 View Source

 @callback args_to_key(args()) :: key()

Generates a unique key for the given arguments.

 Link to this callback

 get_loop_interval(args)

 View Source

 @callback get_loop_interval(args()) :: loop_interval()

Returns the amount of jitter in milliseconds to add to the throttle time.

 Link to this callback

 get_throttle(args)

 View Source

 @callback get_throttle(args()) :: non_neg_integer()

Returns the amount of throttle time in milliseconds.

 Link to this callback

 handle_throttle(args)

 View Source

 @callback handle_throttle(args()) :: any()

The function called after the throttle has completed. This function will
receive the arguments passed to the throttle/1 function.

 Link to this callback

 throttle(args)

 View Source

 @callback throttle(args()) :: :ok | {:error, term()}

A function to call the throttle. This will start
and wait the configured throttle time before calling the handle_throttle/1
function.

MyJitterThrottler

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 get_jitter(args)

 Returns the maximum amount of jitter in milliseconds. This allows
for a bit of random delay before calling the throttle/1 function
to avoid thundering herd problems.

 get_throttle(args)

 Returns the amount of throttle in milliseconds to wait before calling
the throttle/1 function. This function can be overridden to provide
dynamic throttling based on the passed in arguments.

 handle_throttle(args)

 The function that runs after throttle has completed. This function will
be called with the t:Buffy.Throttle.key() and can return anything. The
return value is ignored. If an error is raised, it will be logged and
ignored.

 throttle(args)

 Starts debouncing the given t:Buffy.Throttle.key() for the
module set throttle time. Returns a tuple containing :ok
and the t:pid() of the throttle process.

Functions

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 get_jitter(args)

 View Source

 @spec get_jitter(Buffy.Throttle.args()) :: non_neg_integer()

Returns the maximum amount of jitter in milliseconds. This allows
for a bit of random delay before calling the throttle/1 function
to avoid thundering herd problems.

 Link to this function

 get_throttle(args)

 View Source

 @spec get_throttle(Buffy.Throttle.args()) :: non_neg_integer()

Returns the amount of throttle in milliseconds to wait before calling
the throttle/1 function. This function can be overridden to provide
dynamic throttling based on the passed in arguments.

 Link to this function

 handle_throttle(args)

 View Source

 @spec handle_throttle(Buffy.Throttle.args()) :: any()

The function that runs after throttle has completed. This function will
be called with the t:Buffy.Throttle.key() and can return anything. The
return value is ignored. If an error is raised, it will be logged and
ignored.

 Examples

A simple example of implementing the Buffy.Throttle.handle_throttle/1
callback:
def handle_throttle(args) do
 # Do some work
end
Handling errors in the Buffy.Throttle.handle_throttle/1 callback:
def handle_throttle(args) do
 # Do some work
rescue
 e ->
 # Do something with a raised error
end

 Link to this function

 throttle(args)

 View Source

 @spec throttle(Buffy.Throttle.args()) :: :ok | {:error, term()}

Starts debouncing the given t:Buffy.Throttle.key() for the
module set throttle time. Returns a tuple containing :ok
and the t:pid() of the throttle process.

 Examples

iex> throttle(:my_function_arg)
{:ok, #PID<0.123.0>}

MySlowThrottler

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 get_jitter(args)

 Returns the maximum amount of jitter in milliseconds. This allows
for a bit of random delay before calling the throttle/1 function
to avoid thundering herd problems.

 get_throttle(args)

 Returns the amount of throttle in milliseconds to wait before calling
the throttle/1 function. This function can be overridden to provide
dynamic throttling based on the passed in arguments.

 handle_throttle(arg1)

 The function that runs after throttle has completed. This function will
be called with the t:Buffy.Throttle.key() and can return anything. The
return value is ignored. If an error is raised, it will be logged and
ignored.

 throttle(args)

 Starts debouncing the given t:Buffy.Throttle.key() for the
module set throttle time. Returns a tuple containing :ok
and the t:pid() of the throttle process.

Functions

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 get_jitter(args)

 View Source

 @spec get_jitter(Buffy.Throttle.args()) :: non_neg_integer()

Returns the maximum amount of jitter in milliseconds. This allows
for a bit of random delay before calling the throttle/1 function
to avoid thundering herd problems.

 Link to this function

 get_throttle(args)

 View Source

 @spec get_throttle(Buffy.Throttle.args()) :: non_neg_integer()

Returns the amount of throttle in milliseconds to wait before calling
the throttle/1 function. This function can be overridden to provide
dynamic throttling based on the passed in arguments.

 Link to this function

 handle_throttle(arg1)

 View Source

 @spec handle_throttle(Buffy.Throttle.args()) :: any()

The function that runs after throttle has completed. This function will
be called with the t:Buffy.Throttle.key() and can return anything. The
return value is ignored. If an error is raised, it will be logged and
ignored.

 Examples

A simple example of implementing the Buffy.Throttle.handle_throttle/1
callback:
def handle_throttle(args) do
 # Do some work
end
Handling errors in the Buffy.Throttle.handle_throttle/1 callback:
def handle_throttle(args) do
 # Do some work
rescue
 e ->
 # Do something with a raised error
end

 Link to this function

 throttle(args)

 View Source

 @spec throttle(Buffy.Throttle.args()) :: :ok | {:error, term()}

Starts debouncing the given t:Buffy.Throttle.key() for the
module set throttle time. Returns a tuple containing :ok
and the t:pid() of the throttle process.

 Examples

iex> throttle(:my_function_arg)
{:ok, #PID<0.123.0>}

MyZeroThrottler

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 get_jitter(args)

 Returns the maximum amount of jitter in milliseconds. This allows
for a bit of random delay before calling the throttle/1 function
to avoid thundering herd problems.

 get_throttle(args)

 Returns the amount of throttle in milliseconds to wait before calling
the throttle/1 function. This function can be overridden to provide
dynamic throttling based on the passed in arguments.

 handle_throttle(arg1)

 The function that runs after throttle has completed. This function will
be called with the t:Buffy.Throttle.key() and can return anything. The
return value is ignored. If an error is raised, it will be logged and
ignored.

 throttle(args)

 Starts debouncing the given t:Buffy.Throttle.key() for the
module set throttle time. Returns a tuple containing :ok
and the t:pid() of the throttle process.

Functions

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 get_jitter(args)

 View Source

 @spec get_jitter(Buffy.Throttle.args()) :: non_neg_integer()

Returns the maximum amount of jitter in milliseconds. This allows
for a bit of random delay before calling the throttle/1 function
to avoid thundering herd problems.

 Link to this function

 get_throttle(args)

 View Source

 @spec get_throttle(Buffy.Throttle.args()) :: non_neg_integer()

Returns the amount of throttle in milliseconds to wait before calling
the throttle/1 function. This function can be overridden to provide
dynamic throttling based on the passed in arguments.

 Link to this function

 handle_throttle(arg1)

 View Source

 @spec handle_throttle(Buffy.Throttle.args()) :: any()

The function that runs after throttle has completed. This function will
be called with the t:Buffy.Throttle.key() and can return anything. The
return value is ignored. If an error is raised, it will be logged and
ignored.

 Examples

A simple example of implementing the Buffy.Throttle.handle_throttle/1
callback:
def handle_throttle(args) do
 # Do some work
end
Handling errors in the Buffy.Throttle.handle_throttle/1 callback:
def handle_throttle(args) do
 # Do some work
rescue
 e ->
 # Do something with a raised error
end

 Link to this function

 throttle(args)

 View Source

 @spec throttle(Buffy.Throttle.args()) :: :ok | {:error, term()}

Starts debouncing the given t:Buffy.Throttle.key() for the
module set throttle time. Returns a tuple containing :ok
and the t:pid() of the throttle process.

 Examples

iex> throttle(:my_function_arg)
{:ok, #PID<0.123.0>}

 OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

